poll 内核原理-注释
之前整理的poll的实现原理,给内核代码做了个注释,linux 2.6.11代码貌似,后来偷懒没有写epool了,只是在代码里面分析了一下epoll,poll,select的区别。
下面是一张poll过程的草图,点击大图看清楚一些,太大了不太好显示:
下面贴一下代码,因为当时是直接在代码里面写注释的,就没有额外写文档了。
#define ROUND_UP(x,y) (((x)+(y)-1)/(y))
#define DEFAULT_POLLMASK (POLLIN ¦ POLLOUT ¦ POLLRDNORM ¦ POLLWRNORM)
struct poll_table_entry {
struct file * filp;//我等在这个文件上
wait_queue_t wait;//是这个进程在等
wait_queue_head_t * wait_address;//等在这个队列上
};
/*一般以页为单位记录等待事件,每一个数组元素的poll_table_entry类型数据记录了一次
等待"交易"当有事件发生时,这次交易会被撤销或者说收回。每笔交易详细记录了交易双方
的信息。方便追踪。
*/
struct poll_table_page {
struct poll_table_page * next;
//如果注册的fd比较多,1页4K放不下,则用此链接起来
struct poll_table_entry * entry;
//这个指针永远指向下一个要增加的交易的首地址。
struct poll_table_entry entries[0];//柔性指针
};
#define POLL_TABLE_FULL(table)
((unsigned long)((table)->entry+1) > PAGE_SIZE + (unsigned long)(table))
/*
* Ok, Peter made a complicated, but straightforward multiple_wait() function.
* I have rewritten this, taking some shortcuts: This code may not be easy to
* follow, but it should be free of race-conditions, and it's practical. If you
* understand what I'm doing here, then you understand how the linux
* sleep/wakeup mechanism works.
*
* Two very simple procedures, poll_wait() and poll_freewait() make all the
* work. poll_wait() is an inline-function defined in <linux/poll.h>,
* as all select/poll functions have to call it to add an entry to the
* poll table.
*/
void __pollwait(struct file *filp, wait_queue_head_t *wait_address, poll_table *p);
void poll_initwait(struct poll_wqueues *pwq)
{
/*设置函数指针.值得注意的是,__pollwait函数指针可能会在遍历fd的过程中被置空。
理由如下:当系统在遍历fd过程中,发现前面的fd已经发生了预期的事件,于是,
理所当然的,我们不必要再去设置等待事件了,因为这次循环我们肯定不会等待睡眠的,
我们会直接返回当然了,为了保证合理性,虽然中间碰到了事件发生,我们知道不用等了,
但是,我们依然应该遍历这些fd去判断这些fd是不是有事件,算是给后面的人一个机会吧,
也算是你明知自己不会等了,就别告诉别人说我要等你__pollwait , 而后马上又说我不
等了poll_freewait。这样不人道。
*/
init_poll_funcptr(&pwq->pt, __pollwait);
pwq->error = 0;
pwq->table = NULL;//初始化
}
EXPORT_SYMBOL(poll_initwait);
void poll_freewait(struct poll_wqueues *pwq)
{
struct poll_table_page * p = pwq->table;
while (p) {
struct poll_table_entry * entry;
struct poll_table_page *old;
entry = p->entry;
do {//每次都要整个跑一便,性能问题3
entry--;//从后往前,一笔笔移除交易
//把那个文件/socket和我之间的关系断开
remove_wait_queue(entry->wait_address,&entry->wait);
fput(entry->filp);
//这是在__pollwait干的好事,怕被释放了,故增加引用计数
} while (entry > p->entries);
old = p;
p = p->next;//下一个
free_page((unsigned long) old);//归还这一页
}
}
EXPORT_SYMBOL(poll_freewait);
//__pollwait由驱动程序调用,
//第一个参数为驱动的当前文件描述符,
//wait_address是该文件的等待队列的地址
//_p 其实就等于本函数的地址
void __pollwait(struct file *filp, wait_queue_head_t *wait_address, poll_table *_p)
{
//container_of算出_p所在的poll_wqueues的首地址,然后返回,内核中经常这么使用的
struct poll_wqueues *p = container_of(_p, struct poll_wqueues, pt);
struct poll_table_page *table = p->table;
if (!table ¦¦ POLL_TABLE_FULL(table)) {//如果这个满了,再申请一个
struct poll_table_page *new_table;
//一次一页
new_table = (struct poll_table_page *) __get_free_page(GFP_KERNEL);
if (!new_table) {
p->error = -ENOMEM;
__set_current_state(TASK_RUNNING);
return;
}
//由此可知,entry指向页的poll_table_entry数组尾部
new_table->entry = new_table->entries;
//挂到队列的头部
new_table->next = table;
p->table = new_table;
table = new_table;
}
//下面的功能:
//1. 在poll_table_page中增加一条记录,表示我在等着这个文件filp的这个等待队列wait_address上。
//2. 把我这次等待事件加入到设备的等待队列wait_address中,通过list_head双向链表加入
/* Add a new entry */
{
struct poll_table_entry * entry = table->entry;
table->entry = entry+1;//尾部向上增长
get_file(filp);//因为我等在你上面,所以增加其引用计数
entry->filp = filp;//记录等待的文件,socket
entry->wait_address = wait_address;//记录等在哪个等待队列上
init_waitqueue_entry(&entry->wait, current);//是这个进程在等哈
add_wait_queue(wait_address,&entry->wait);//将2这连接起来,将这条记录增加到wait_address的列表中
//表示等待wait_address的进程记录
}
/*
大概在啰嗦一下等待队列,系统在被等待者和等待者2方面都记录了这次事件,相当于2个人结婚,必定双方都有结婚证
等待者:记录了这次"交易"是等在谁上面,进程号是多少 被等待者是谁
被等待者: 记录谁在我身上等待,并且指向被等待者的对应wait_queue_t结构。
这样当有事件发生时,被等待者能够找到对应的进程,然后唤醒它。等待者也能够在适当时机有机会
撤销这次等待。比如poll_freewait就是做这样的事情,撤销这次等待。
*/
}
#define FDS_IN(fds, n) (fds->in + n)
#define FDS_OUT(fds, n) (fds->out + n)
#define FDS_EX(fds, n) (fds->ex + n)
#define BITS(fds, n) (*FDS_IN(fds, n)¦*FDS_OUT(fds, n)¦*FDS_EX(fds, n))
static int max_select_fd(unsigned long n, fd_set_bits *fds)
{
unsigned long *open_fds;
unsigned long set;
int max;
/* handle last in-complete long-word first */
set = ~(~0UL << (n & (__NFDBITS-1))); n /= __NFDBITS; open_fds = current->files->open_fds->fds_bits+n;
max = 0;
if (set) {
set &= BITS(fds, n);
if (set) {
if (!(set & ~*open_fds))
goto get_max;
return -EBADF;
}
}
while (n) {
open_fds--;
n--;
set = BITS(fds, n);
if (!set)
continue;
if (set & ~*open_fds)
return -EBADF;
if (max)
continue;
get_max:
do {
max++;
set >>= 1;
} while (set);
max += n * __NFDBITS;
}
return max;
}
#define BIT(i) (1UL << ((i)&(__NFDBITS-1))) #define MEM(i,m) ((m)+(unsigned)(i)/__NFDBITS) #define ISSET(i,m) (((i)&*(m)) != 0) #define SET(i,m) (*(m) ¦= (i)) #define POLLIN_SET (POLLRDNORM ¦ POLLRDBAND ¦ POLLIN ¦ POLLHUP ¦ POLLERR) #define POLLOUT_SET (POLLWRBAND ¦ POLLWRNORM ¦ POLLOUT ¦ POLLERR) #define POLLEX_SET (POLLPRI) int do_select(int n, fd_set_bits *fds, long *timeout) { struct poll_wqueues table; poll_table *wait; int retval, i; long __timeout = *timeout; spin_lock(¤t->files->file_lock);
retval = max_select_fd(n, fds);
spin_unlock(¤t->files->file_lock);
if (retval < 0) return retval; n = retval; poll_initwait(&table); wait = &table.pt; if (!__timeout) wait = NULL; retval = 0; for (;;) { unsigned long *rinp, *routp, *rexp, *inp, *outp, *exp; set_current_state(TASK_INTERRUPTIBLE); inp = fds->in; outp = fds->out; exp = fds->ex;
rinp = fds->res_in; routp = fds->res_out; rexp = fds->res_ex;
for (i = 0; i < n; ++rinp, ++routp, ++rexp) {
unsigned long in, out, ex, all_bits, bit = 1, mask, j;
unsigned long res_in = 0, res_out = 0, res_ex = 0;
struct file_operations *f_op = NULL;
struct file *file = NULL;
in = *inp++; out = *outp++; ex = *exp++;
all_bits = in ¦ out ¦ ex;
if (all_bits == 0) {
i += __NFDBITS;
continue;
}
for (j = 0; j < __NFDBITS; ++j, ++i, bit <<= 1) { if (i >= n)
break;
if (!(bit & all_bits))
continue;
file = fget(i);
if (file) {
f_op = file->f_op;
mask = DEFAULT_POLLMASK;
if (f_op && f_op->poll)
mask = (*f_op->poll)(file, retval ? NULL : wait);
fput(file);
if ((mask & POLLIN_SET) && (in & bit)) {
res_in ¦= bit;
retval++;
}
if ((mask & POLLOUT_SET) && (out & bit)) {
res_out ¦= bit;
retval++;
}
if ((mask & POLLEX_SET) && (ex & bit)) {
res_ex ¦= bit;
retval++;
}
}
cond_resched();
}
if (res_in)
*rinp = res_in;
if (res_out)
*routp = res_out;
if (res_ex)
*rexp = res_ex;
}
wait = NULL;
if (retval ¦¦ !__timeout ¦¦ signal_pending(current))
break;
if(table.error) {
retval = table.error;
break;
}
__timeout = schedule_timeout(__timeout);
}
__set_current_state(TASK_RUNNING);
poll_freewait(&table);
/*
* Up-to-date the caller timeout.
*/
*timeout = __timeout;
return retval;
}
static void *select_bits_alloc(int size)
{
return kmalloc(6 * size, GFP_KERNEL);
}
static void select_bits_free(void *bits, int size)
{
kfree(bits);
}
/*
* We can actually return ERESTARTSYS instead of EINTR, but I'd
* like to be certain this leads to no problems. So I return
* EINTR just for safety.
*
* Update: ERESTARTSYS breaks at least the xview clock binary, so
* I'm trying ERESTARTNOHAND which restart only when you want to.
*/
#define MAX_SELECT_SECONDS
((unsigned long) (MAX_SCHEDULE_TIMEOUT / HZ)-1)
asmlinkage long
sys_select(int n, fd_set __user *inp, fd_set __user *outp,
fd_set __user *exp, struct timeval __user *tvp)
{
fd_set_bits fds;
char *bits;
long timeout;
int ret, size, max_fdset;
timeout = MAX_SCHEDULE_TIMEOUT;
if (tvp) {
time_t sec, usec;
if ((ret = verify_area(VERIFY_READ, tvp, sizeof(*tvp)))
¦¦ (ret = __get_user(sec, &tvp->tv_sec))
¦¦ (ret = __get_user(usec, &tvp->tv_usec)))
goto out_nofds;
ret = -EINVAL;
if (sec < 0 ¦¦ usec < 0)
goto out_nofds;
if ((unsigned long) sec < MAX_SELECT_SECONDS) {
timeout = ROUND_UP(usec, 1000000/HZ);
timeout += sec * (unsigned long) HZ;
}
}
ret = -EINVAL;
if (n < 0) goto out_nofds; /* max_fdset can increase, so grab it once to avoid race */ max_fdset = current->files->max_fdset;
if (n > max_fdset)
n = max_fdset;
/*
* We need 6 bitmaps (in/out/ex for both incoming and outgoing),
* since we used fdset we need to allocate memory in units of
* long-words.
*/
ret = -ENOMEM;
size = FDS_BYTES(n);
bits = select_bits_alloc(size);
if (!bits)
goto out_nofds;
fds.in = (unsigned long *) bits;
fds.out = (unsigned long *) (bits + size);
fds.ex = (unsigned long *) (bits + 2*size);
fds.res_in = (unsigned long *) (bits + 3*size);
fds.res_out = (unsigned long *) (bits + 4*size);
fds.res_ex = (unsigned long *) (bits + 5*size);
if ((ret = get_fd_set(n, inp, fds.in)) ¦¦
(ret = get_fd_set(n, outp, fds.out)) ¦¦
(ret = get_fd_set(n, exp, fds.ex)))
goto out;
zero_fd_set(n, fds.res_in);
zero_fd_set(n, fds.res_out);
zero_fd_set(n, fds.res_ex);
ret = do_select(n, &fds, &timeout);
if (tvp && !(current->personality & STICKY_TIMEOUTS)) {
time_t sec = 0, usec = 0;
if (timeout) {
sec = timeout / HZ;
usec = timeout % HZ;
usec *= (1000000/HZ);
}
put_user(sec, &tvp->tv_sec);
put_user(usec, &tvp->tv_usec);
}
if (ret < 0) goto out; if (!ret) { ret = -ERESTARTNOHAND; if (signal_pending(current)) goto out; ret = 0; } if (set_fd_set(n, inp, fds.res_in) ¦¦ set_fd_set(n, outp, fds.res_out) ¦¦ set_fd_set(n, exp, fds.res_ex)) ret = -EFAULT; out: select_bits_free(bits, size); out_nofds: return ret; } struct poll_list { struct poll_list *next; int len; struct pollfd entries[0]; }; #define POLLFD_PER_PAGE ((PAGE_SIZE-sizeof(struct poll_list)) / sizeof(struct pollfd)) //sock_poll从socket移过来的 /* No kernel lock held - perfect */ static unsigned int sock_poll(struct file *file, poll_table * wait) { struct socket *sock; /* * We can't return errors to poll, so it's either yes or no. */ sock = SOCKET_I(file->f_dentry->d_inode);
return sock->ops->poll(file, sock, wait);//对于tcp,实际调用tcp_poll
}
//tcp_poll从tcp.c移动过来
/*
* Wait for a TCP event.
*
* Note that we don't need to lock the socket, as the upper poll layers
* take care of normal races (between the test and the event) and we don't
* go look at any of the socket buffers directly.
*/
unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
{
unsigned int mask;
struct sock *sk = sock->sk;
struct tcp_sock *tp = tcp_sk(sk);
poll_wait(file, sk->sk_sleep, wait);
if (sk->sk_state == TCP_LISTEN)
return tcp_listen_poll(sk, wait);
/* Socket is not locked. We are protected from async events
by poll logic and correct handling of state changes
made by another threads is impossible in any case.
*/
mask = 0;
if (sk->sk_err)
mask = POLLERR;
/*
* POLLHUP is certainly not done right. But poll() doesn't
* have a notion of HUP in just one direction, and for a
* socket the read side is more interesting.
*
* Some poll() documentation says that POLLHUP is incompatible
* with the POLLOUT/POLLWR flags, so somebody should check this
* all. But careful, it tends to be safer to return too many
* bits than too few, and you can easily break real applications
* if you don't tell them that something has hung up!
*
* Check-me.
*
* Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
* our fs/select.c). It means that after we received EOF,
* poll always returns immediately, making impossible poll() on write()
* in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
* if and only if shutdown has been made in both directions.
* Actually, it is interesting to look how Solaris and DUX
* solve this dilemma. I would prefer, if PULLHUP were maskable,
* then we could set it on SND_SHUTDOWN. BTW examples given
* in Stevens' books assume exactly this behaviour, it explains
* why PULLHUP is incompatible with POLLOUT. --ANK
*
* NOTE. Check for TCP_CLOSE is added. The goal is to prevent
* blocking on fresh not-connected or disconnected socket. --ANK
*/
if (sk->sk_shutdown == SHUTDOWN_MASK ¦¦ sk->sk_state == TCP_CLOSE)
mask ¦= POLLHUP;
if (sk->sk_shutdown & RCV_SHUTDOWN)
mask ¦= POLLIN ¦ POLLRDNORM;
/* Connected? */
if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT ¦ TCPF_SYN_RECV)) {
/* Potential race condition. If read of tp below will
* escape above sk->sk_state, we can be illegally awaken
* in SYN_* states. */
if ((tp->rcv_nxt != tp->copied_seq) &&
(tp->urg_seq != tp->copied_seq ¦¦
tp->rcv_nxt != tp->copied_seq + 1 ¦¦
sock_flag(sk, SOCK_URGINLINE) ¦¦ !tp->urg_data))
mask ¦= POLLIN ¦ POLLRDNORM;
if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
mask ¦= POLLOUT ¦ POLLWRNORM;
} else { /* send SIGIO later */
set_bit(SOCK_ASYNC_NOSPACE,
&sk->sk_socket->flags);
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
/* Race breaker. If space is freed after
* wspace test but before the flags are set,
* IO signal will be lost.
*/
if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
mask ¦= POLLOUT ¦ POLLWRNORM;
}
}
if (tp->urg_data & TCP_URG_VALID)
mask ¦= POLLPRI;
}
return mask;
}
//处理一页pollfd句柄,fdpage为本页的句柄结构开始地址,
//pwait是回调函数包装器的地址(指针的指针),
//count输出变化数目,累加,不能清零处理
static void do_pollfd(unsigned int num, struct pollfd * fdpage,
poll_table ** pwait, int *count)
{
int i;
for (i = 0; i < num; i++) {//对本页的所有pollfd int fd; unsigned int mask; struct pollfd *fdp; mask = 0; fdp = fdpage+i;//指向当前的fd结构 fd = fdp->fd;//句柄
if (fd >= 0) {//以防万一吧,要是用户没有初始化···
//下面根据句柄值,得到file结构,其实际上为socket,file,等结构,linux什么都是文件
struct file * file = fget(fd);//增加引用计数
mask = POLLNVAL;
if (file != NULL) {
mask = DEFAULT_POLLMASK;
//如果此设备,网卡等支持等待查询poll.如果文件是socket,则poll是网卡驱动实现的
//如果设备是文件系统,则由文件系统驱动实现。
//下面咱们以tcp socket为例子介绍一下驱动程序实现的poll.TCP的poll成员设置在af_inet.c文件中。
//poll字段被设置为sock_poll,后者直接调用tcp_poll,文件系统等也类似,
//管道调用pipe_poll,而他们的实现基本相同:调用poll_wait
//poll_wait设备以自己的等待队列为参数,调用pwait所指向的回调函数,就是:__pollwait !!!
if (file->f_op && file->f_op->poll)
mask = file->f_op->poll(file, *pwait);
mask &= fdp->events ¦ POLLERR ¦ POLLHUP;
//用户要关注的事件+错误,断开事件,求交
fput(file);//减少引用计数
}
if (mask) {
//如果非0,表示发生了用户关注的事件fdp->events或POLLERR ¦ POLLHUP
*pwait = NULL;
//将回调函数包装器指针置空,注意不是将包装器置空,是改变参数的指向
(*count)++;//out参数记录发生了变化的事件
}
}
fdp->revents = mask;
//记录此文件/socket发生的事件掩码,可在应用程序中查询
}
}
//nfds: 注册的fd总数
//list: 用户传进来的
static int do_poll(unsigned int nfds, struct poll_list *list,
struct poll_wqueues *wait, long timeout)
{
int count = 0;
poll_table* pt = &wait->pt;//记录回调函数指针
if (!timeout)//如果等待时间为0,··,表示不等待
pt = NULL;
for (;;) {//不到黄河心不死,一直等待到timeout
struct poll_list *walk;
set_current_state(TASK_INTERRUPTIBLE);//可中断的等待状态,允许被中断唤醒
walk = list;//<从头再来>
while(walk != NULL) {
//一次遍历一页,传入本页的pollfd数目,开始地址,回调函数,以及输出参数
//pt指向参数wait的pt的地址,如果监视的文件发生了变化,则会被置空poll_table,从而不等待
//又遍历,能不慢吗,性能问题4
do_pollfd( walk->len, walk->entries, &pt, &count);
walk = walk->next;
}
pt = NULL;
if (count ¦¦ !timeout ¦¦ signal_pending(current))
break;//有事件/超时/发生中断
count = wait->error;
if (count)//有错
break;
timeout = schedule_timeout(timeout);
//睡一会,然后减去睡掉的时间赋值给timeout。
//如果中间有人叫我,因为set_current_state(TASK_INTERRUPTIBLE);,所以我会被叫醒的
}
__set_current_state(TASK_RUNNING);
//这是啥意 ?不是本来就这样吗?谁告诉我一下hw_henry2008@126.com
return count;
}
asmlinkage long sys_poll(struct pollfd __user * ufds, unsigned int nfds, long timeout)
{
//后面基本可以说明,poll的缺陷的根源在于可重入,
//每次都要做很多重复的工作,考数据,分配内存,准备数据
//还好,时间复杂度是O(n)的
struct poll_wqueues table;
int fdcount, err;
unsigned int i;
struct poll_list *head;
struct poll_list *walk;
/* Do a sanity check on nfds ... */
if (nfds > current->files->max_fdset && nfds > OPEN_MAX)
return -EINVAL;
if (timeout) {
/* Careful about overflow in the intermediate values */
if ((unsigned long) timeout < MAX_SCHEDULE_TIMEOUT / HZ) timeout = (unsigned long)(timeout*HZ+999)/1000+1; else /* Negative or overflow */ timeout = MAX_SCHEDULE_TIMEOUT; } poll_initwait(&table);//设置__pollwait函数指针到table的pt里面 head = NULL; walk = NULL; i = nfds; err = -ENOMEM; while(i!=0) { //#我们需要每次都重复同样的工作,开辟内存,从用户空间到内核考数据。性能问题1 struct poll_list *pp; pp = kmalloc(sizeof(struct poll_list)+ sizeof(struct pollfd)* (i>POLLFD_PER_PAGE?POLLFD_PER_PAGE:i),
GFP_KERNEL);
//如果要注册的fd比较多,一页放不下,则需要循环一页页分配,组成双向链表,
//每个链表元素的前面是list前后指针.注意poll_list是一个柔性数组,entries成员就是data的首地址
if(pp==NULL)
goto out_fds;
pp->next=NULL;
pp->len = (i>POLLFD_PER_PAGE?POLLFD_PER_PAGE:i);
//记录本页有多少个用户传进来的pollfd
if (head == NULL)
head = pp;
else
walk->next = pp;
walk = pp;//从用户空间中拷贝pollfd 结构到内核空间,此处开销大
if (copy_from_user(pp->entries, ufds + nfds-i,
sizeof(struct pollfd)*pp->len)) {
err = -EFAULT;
goto out_fds;
}
i -= pp->len;
}
//上面的部分拷贝用户注册的pollfd数组到内核空间,准备好链表
fdcount = do_poll(nfds, head, &table, timeout);
//下面进行清理工作,拷贝结果到用户空间,清空内存
/* OK, now copy the revents fields back to user space. */
walk = head;
err = -EFAULT;
//下面有需要一遍遍遍历,性能问题2
while(walk != NULL) {
//一页页的遍历直到尾部,注意这些页的顺序和传进来的ufds数组一一对应
struct pollfd *fds = walk->entries;//从这页首地址开始。
int j;
for (j=0; j < walk->len; j++, ufds++)
//将每一个pollfd发生的事件都写入用户空间中
if(__put_user(fds[j].revents, &ufds->revents))
goto out_fds;
}
walk = walk->next;//到下一页处理
}
err = fdcount;//记录发生改变的数目
//检查当前进程是否有信号处理,返回不为0表示有信号需要处理
if (!fdcount && signal_pending(current))
err = -EINTR;//如果发生改变的数目为0,且当前进程发生中断,
//因为do_poll中set_current_state(TASK_INTERRUPTIBLE)将进程设置为可中断的等待状态了,
//所以可能进程在等待网络事件的时候,发生了中断,这样进程提前退出等待了
out_fds:
walk = head;
while(walk!=NULL) {//归还内存
struct poll_list *pp = walk->next;
kfree(walk);
walk = pp;
}
//!!!
poll_freewait(&table);
return err;
}


近期评论