nginx源码阅读-ngx_times.c时间管理
此处记录一下在看ngx_times.c时的随手写下的注释。
/* * Copyright (C) Igor Sysoev */ #include <ngx_config.h> #include <ngx_core.h> /* * The time may be updated by signal handler or by several threads. * The time update operations are rare and require to hold the ngx_time_lock. * The time read operations are frequent, so they are lock-free and get time * values and strings from the current slot. Thus thread may get the corrupted * values only if it is preempted while copying and then it is not scheduled * to run more than NGX_TIME_SLOTS seconds. */ //k 上面最后一句没看明白,时间读多,写少。如果出现冲突,肯定是中间抢占了并且NGX_TIME_SLOTS秒还没有开始运行 //k 我明白了,这里采用双缓冲的超级版本,64缓冲机制,时间的字符串值采用64秒一个轮回, //k 通过下面的ngx_cached_*变量直接访问,而不是通过cached_err_log_time[slot]进行索引访问。这样冲突的概率非常小,64秒内还没有调度运行,才有可能。 //k 不过其实咱们能想到,取错误日志时间,正常时间,三者还是可能出现一秒的误差,不过这是在一秒的开始,结束,没啥关系的 #define NGX_TIME_SLOTS 64 static ngx_uint_t slot; static ngx_atomic_t ngx_time_lock;//k 这锁高效啊,一个整数 volatile ngx_msec_t ngx_current_msec; volatile ngx_time_t *ngx_cached_time; volatile ngx_str_t ngx_cached_err_log_time; volatile ngx_str_t ngx_cached_http_time; volatile ngx_str_t ngx_cached_http_log_time; #if !(NGX_WIN32) /* * locatime() and localtime_r() are not Async-Signal-Safe functions, therefore, * they must not be called by a signal handler, so we use the cached * GMT offset value. Fortunately the value is changed only two times a year. */ static ngx_int_t cached_gmtoff; #endif static ngx_time_t cached_time[NGX_TIME_SLOTS]; static u_char cached_err_log_time[NGX_TIME_SLOTS] [sizeof("1970/09/28 12:00:00")]; static u_char cached_http_time[NGX_TIME_SLOTS] [sizeof("Mon, 28 Sep 1970 06:00:00 GMT")]; static u_char cached_http_log_time[NGX_TIME_SLOTS] [sizeof("28/Sep/1970:12:00:00 +0600")]; static char *week[] = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" }; static char *months[] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" }; void ngx_time_init(void) { ngx_cached_err_log_time.len = sizeof("1970/09/28 12:00:00") - 1; ngx_cached_http_time.len = sizeof("Mon, 28 Sep 1970 06:00:00 GMT") - 1; ngx_cached_http_log_time.len = sizeof("28/Sep/1970:12:00:00 +0600") - 1; ngx_cached_time = &cached_time[0]; ngx_time_update(); } /*k ngx_master_process_cycle会每次处理完信号后调用这里; ngx_epoll_process_events如果设置了ngx_timer_resolution也会定期掉这里,这个是配置精确时间时用的 */ void ngx_time_update(void) { u_char *p0, *p1, *p2; ngx_tm_t tm, gmt;//k struct tm time_t sec; ngx_uint_t msec; ngx_time_t *tp; struct timeval tv; if (!ngx_trylock(&ngx_time_lock)) { return;//k 如果没拿到锁,那给力,有人在更新呢 } ngx_gettimeofday(&tv);//k gettimeofday(tp, NULL); sec = tv.tv_sec; msec = tv.tv_usec / 1000; ngx_current_msec = (ngx_msec_t) sec * 1000 + msec;//k 当前的毫秒数,可以立即更新 tp = &cached_time[slot];//k 引用全局的缓存时间slot位置 if (tp->sec == sec) { //k 秒数相等,就只更新毫秒数了,其他不动,那其他时间值呢,因为下面的字符串值压根就不需要毫秒数,所以咱们可以直接退出啦 tp->msec = msec; ngx_unlock(&ngx_time_lock); return; } if (slot == NGX_TIME_SLOTS - 1) {//k 不断轮询这个cached_time结构,到头了回0 slot = 0;//k 这里就加1了,那其他线程读取这个值,怎么办?,我还没更新完呢,你们怎么也得取上一个吧 } else { slot++; } tp = &cached_time[slot];//k 指向下一个槽位 tp->sec = sec;//k 更新新的槽位的时间,让他等于最新的时间 tp->msec = msec; ngx_gmtime(sec, &gmt);//k 搞一个字符串型的时间值用用 p0 = &cached_http_time[slot][0]; (void) ngx_sprintf(p0, "%s, %02d %s %4d %02d:%02d:%02d GMT", week[gmt.ngx_tm_wday], gmt.ngx_tm_mday, months[gmt.ngx_tm_mon - 1], gmt.ngx_tm_year, gmt.ngx_tm_hour, gmt.ngx_tm_min, gmt.ngx_tm_sec); #if (NGX_HAVE_GETTIMEZONE) tp->gmtoff = ngx_gettimezone(); ngx_gmtime(sec + tp->gmtoff * 60, &tm); #elif (NGX_HAVE_GMTOFF) ngx_localtime(sec, &tm); cached_gmtoff = (ngx_int_t) (tm.ngx_tm_gmtoff / 60); tp->gmtoff = cached_gmtoff; #else ngx_localtime(sec, &tm); cached_gmtoff = ngx_timezone(tm.ngx_tm_isdst); tp->gmtoff = cached_gmtoff; #endif //k 更新错误日志的时间值 p1 = &cached_err_log_time[slot][0]; (void) ngx_sprintf(p1, "%4d/%02d/%02d %02d:%02d:%02d", tm.ngx_tm_year, tm.ngx_tm_mon, tm.ngx_tm_mday, tm.ngx_tm_hour, tm.ngx_tm_min, tm.ngx_tm_sec); p2 = &cached_http_log_time[slot][0]; (void) ngx_sprintf(p2, "%02d/%s/%d:%02d:%02d:%02d %c%02d%02d", tm.ngx_tm_mday, months[tm.ngx_tm_mon - 1], tm.ngx_tm_year, tm.ngx_tm_hour, tm.ngx_tm_min, tm.ngx_tm_sec, tp->gmtoff < 0 ? '-' : '+', ngx_abs(tp->gmtoff / 60), ngx_abs(tp->gmtoff % 60)); ngx_memory_barrier();//k 这个作用是啥 ? //k 作用是,如果不加这个,编译器可能会将p1,p2,p3本来是123123的方式排列,优化为112233的方式,从而,应用程序读取的时间发生冲突的概率更大了。妙! //k 到这里才正式更新,更新后,其他地方就可以通过下面的结构直接访问到了,不用通过数组,slot来访问。相当于上面printf更新的时候,其他线程还是访问不到的 //k 这里相当于数组时用来做双缓冲的超级版本,64缓冲用的,64秒一个轮回,这样保证正常情况下,不会出现串了的情况 //k 不过还是有个小注意点,比如我先打一条ngx_cached_http_time日志,然后一条ngx_cached_http_log_time到文件中,然后发现,前面一条是10秒的时候,后面一条却是9秒,穿越了 //k 因为下面的四条的更新不是原子操作 ngx_cached_time = tp; ngx_cached_http_time.data = p0; ngx_cached_err_log_time.data = p1; ngx_cached_http_log_time.data = p2; ngx_unlock(&ngx_time_lock); } #if !(NGX_WIN32) void ngx_time_sigsafe_update(void) {//k 这个函数只更新cached_err_log_time时间,只在ngx_signal_handler里面用过,收到信号的时候 //k 取得最新时间,不是通过缓存的时间取的。但设置到了缓存的里面了,而且把slot增加了 u_char *p; ngx_tm_t tm; time_t sec; ngx_time_t *tp; struct timeval tv; if (!ngx_trylock(&ngx_time_lock)) { return; } ngx_gettimeofday(&tv); sec = tv.tv_sec; tp = &cached_time[slot]; if (tp->sec == sec) {//k 如果秒数相等,不用更新啥的。这样一秒内多个信号,不会重复更新,凭白白费多个slot ngx_unlock(&ngx_time_lock); return; } if (slot == NGX_TIME_SLOTS - 1) { slot = 0; } else {//k 增加一个新的槽位,但是却不更新&cached_time[slot]处的时间值,而至更新cached_err_log_time时间,你明知道它有更新 //k 这样我一秒给你来600个信号,第一个你这样走了,然后新的slot的时间必然是64秒之前的,然后你以为时间不对,然后就又去增加slot··· slot++; } //k 信号处理调用这个函数却没有像下面一样更新当前最新槽位的时间, //k 这样迫使在下次ngx_time_update的时候看这个槽位上还是64秒之前的那个时间,于是将slot增加1,放入下一个。这样这个槽位就相当于白费了。 //tp->sec = sec;//k 更新新的槽位的时间,让他等于最新的时间 /*k 上面这行曾经有个bug,见这里:http://forum.nginx.org/read.php?29,231001 *) Fixed possible use of old cached times if runtime went backwards. If ngx_time_sigsafe_update() updated only ngx_cached_err_log_time, and then clock was adjusted backwards, the cached_time[slot].sec might accidentally match current seconds on next ngx_time_update() call, resulting in various cached times not being updated. Fix is to clear the cached_time[slot].sec to explicitly mark cached times are stale and need updating. */ ngx_gmtime(sec + cached_gmtoff * 60, &tm); p = &cached_err_log_time[slot][0]; (void) ngx_sprintf(p, "%4d/%02d/%02d %02d:%02d:%02d", tm.ngx_tm_year, tm.ngx_tm_mon, tm.ngx_tm_mday, tm.ngx_tm_hour, tm.ngx_tm_min, tm.ngx_tm_sec); ngx_memory_barrier(); //k 其实在这里我们知道,ngx_cached_* 这几个变量,不一定是一一的对应到对应的数组的slot位置,一旦掉了这个函数,ngx_cached_err_log_time就指向最新的slot处; //k 但其他却指向前一个,然后等ngx_time_update调用后,全都指向再下一个,相当于一个信号让他们跳级了 ngx_cached_err_log_time.data = p; ngx_unlock(&ngx_time_lock); } #endif u_char * ngx_http_time(u_char *buf, time_t t) { ngx_tm_t tm; ngx_gmtime(t, &tm); return ngx_sprintf(buf, "%s, %02d %s %4d %02d:%02d:%02d GMT", week[tm.ngx_tm_wday], tm.ngx_tm_mday, months[tm.ngx_tm_mon - 1], tm.ngx_tm_year, tm.ngx_tm_hour, tm.ngx_tm_min, tm.ngx_tm_sec); } u_char * ngx_http_cookie_time(u_char *buf, time_t t) { ngx_tm_t tm; ngx_gmtime(t, &tm); /* * Netscape 3.x does not understand 4-digit years at all and * 2-digit years more than "37" */ return ngx_sprintf(buf, (tm.ngx_tm_year > 2037) ? "%s, %02d-%s-%d %02d:%02d:%02d GMT": "%s, %02d-%s-%02d %02d:%02d:%02d GMT", week[tm.ngx_tm_wday], tm.ngx_tm_mday, months[tm.ngx_tm_mon - 1], (tm.ngx_tm_year > 2037) ? tm.ngx_tm_year: tm.ngx_tm_year % 100, tm.ngx_tm_hour, tm.ngx_tm_min, tm.ngx_tm_sec); } void ngx_gmtime(time_t t, ngx_tm_t *tp) { ngx_int_t yday; ngx_uint_t n, sec, min, hour, mday, mon, year, wday, days, leap; /* the calculation is valid for positive time_t only */ n = (ngx_uint_t) t; days = n / 86400; /* Jaunary 1, 1970 was Thursday */ wday = (4 + days) % 7; n %= 86400; hour = n / 3600; n %= 3600; min = n / 60; sec = n % 60; /* * the algorithm based on Gauss' formula, * see src/http/ngx_http_parse_time.c */ /* days since March 1, 1 BC */ days = days - (31 + 28) + 719527; /* * The "days" should be adjusted to 1 only, however, some March 1st's go * to previous year, so we adjust them to 2. This causes also shift of the * last Feburary days to next year, but we catch the case when "yday" * becomes negative. */ year = (days + 2) * 400 / (365 * 400 + 100 - 4 + 1); yday = days - (365 * year + year / 4 - year / 100 + year / 400); if (yday < 0) { leap = (year % 4 == 0) && (year % 100 || (year % 400 == 0)); yday = 365 + leap + yday; year--; } /* * The empirical formula that maps "yday" to month. * There are at least 10 variants, some of them are: * mon = (yday + 31) * 15 / 459 * mon = (yday + 31) * 17 / 520 * mon = (yday + 31) * 20 / 612 */ mon = (yday + 31) * 10 / 306; /* the Gauss' formula that evaluates days before the month */ mday = yday - (367 * mon / 12 - 30) + 1; if (yday >= 306) { year++; mon -= 10; /* * there is no "yday" in Win32 SYSTEMTIME * * yday -= 306; */ } else { mon += 2; /* * there is no "yday" in Win32 SYSTEMTIME * * yday += 31 + 28 + leap; */ } tp->ngx_tm_sec = (ngx_tm_sec_t) sec; tp->ngx_tm_min = (ngx_tm_min_t) min; tp->ngx_tm_hour = (ngx_tm_hour_t) hour; tp->ngx_tm_mday = (ngx_tm_mday_t) mday; tp->ngx_tm_mon = (ngx_tm_mon_t) mon; tp->ngx_tm_year = (ngx_tm_year_t) year; tp->ngx_tm_wday = (ngx_tm_wday_t) wday; } time_t ngx_next_time(time_t when) { time_t now, next; struct tm tm; now = ngx_time(); ngx_libc_localtime(now, &tm); tm.tm_hour = (int) (when / 3600); when %= 3600; tm.tm_min = (int) (when / 60); tm.tm_sec = (int) (when % 60); next = mktime(&tm); if (next == -1) { return -1; } if (next - now > 0) { return next; } tm.tm_mday++; /* mktime() should normalize a date (Jan 32, etc) */ next = mktime(&tm); if (next != -1) { return next; } return -1; }
近期评论